何涛

发布单位:人员机构编辑:发布日期:2019/09/23浏览量:7604

基本信息

姓 名:何 涛
电 话:021-57124068
邮 箱:taohe@shnu.edu.cn
地 址:上海市海思路100
邮 编:201418


教育背景

2014.07-2018.06 英国伯明翰大学 土木工程 博士
2008.09-2013.12 
上海交通大学 结构工程 博士
2004.09-2006.12 
华中科技大学 结构工程 硕士
2000.09-2004.06 
武汉科技大学 土木工程 学士

工作经历

2016.09至今 上海师范大学 建筑工程学院 副研究员
2017.08-2018.07 
爱丁堡龙比亚大学 工程与建筑环境学院 访问学者
2014.12-2016.08 
上海师范大学 建筑工程学院 讲师
2007.04-2008.06 
中国地震局 地震研究所 助理工程师

讲授课程

研究生:《计算结构力学》、《专业英语》等
本科生:《工程流体力学》、《土木工程测量》、《力学与生活》等

研究方向

流固耦合有限元方法、计算流体力学

主持课题

[05] 国家自然科学基金面上项目:无惧网格破坏的流固耦合光滑有限元分区半隐式耦合算法研究,2025.01-2028.12
[04] 
上海市自然科学基金面上项目:基于特征线分裂的流固耦合分区半隐式算法研究及应用,2019.07-2022.06
[03] 
国家自然科学基金青年项目:风敏感结构流固耦合计算新方法与风致振动机理研究,2016.01-2018.12
[02] 
上海高校青年教师培养资助计划:基于ALE-CBS有限元技术的流固耦合分区算法研究2016.09-2018.08
[
01
中国地震局地震研究所所长基金:竖向地震动对高耸结构的性能影响研究2007.09-2008.06

发表论文

[37] He T. On the mesh insensitivity of the edge-based smoothed finite element method for moving-domain problems. Computer Methods in Applied Mechanics and Engineering, 2025, 440: 117917.
[36] 
He T. A brief review on partitioned semi-implicit coupling methods in computational fluid-structure interaction. Progress in Computational Fluid Dynamics, 2025, 25(2): 109-122.
[35] 
He T*, Lu F-X, Ma X. A reduced smoothed integration scheme of the cell-based smoothed finite element method for solving fluid-structure interaction on severely distorted meshes. International Journal for Numerical Methods in Fluids, 2024, 96(8): 1337-1364.
[34] 
He T. CBS-based partitioned semi-implicit coupling algorithms for fluid-structure interaction: A decade review. Archives of Computational Methods in Engineering, 2024, 31(3): 1721-1748. (accept as is)
[33] 
He T*, Ma X. An edge-based smoothed finite element method for semi-implicit coupling of unsteady viscoelastic fluid-structure interaction. Computers and Structures, 2023, 281: 107028.
[32] 
He T*, Yao W-J, Zhang X-Y. An edge-based smoothed finite element framework for partitioned simulation of vortex-induced vibration problems. International Journal for Numerical Methods in Fluids, 2022, 94(11): 1863-1887.
[31] 
He T*, Zhang X-Y, Yao W-J. An edge-based smoothed finite-element method for vortex-induced vibration in generalized Newtonian fluids. Journal of Engineering Mechanics, 2022, 148(11): 04022069.
[30] 
He T. Modeling fluid-structure interaction with the edge-based smoothed finite element method. Journal of Computational Physics, 2022, 460: 111171.
[29] 
He T. A stabilized cell-based smoothed finite element method against severe mesh distortion in non-Newtonian fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2022, 123(9): 2162-2184.
[28] 
He T. On the edge-based smoothed finite element approximation of viscoelastic fluid flows. International Journal for Numerical Methods in Fluids, 2022, 94(5): 423-442.
[27] 
He T. Cell-based smoothed finite-element framework for strongly coupled non-Newtonian fluid-structure interaction. Journal of Engineering Mechanics, 2021, 147(10): 04021062.
[26] 
He T. Stabilization of a smoothed finite element semi-implicit coupling scheme for viscoelastic fluid-structure interaction. Journal of Non-Newtonian Fluid Mechanics, 2021, 292: 104545.
[25] 
He T. Extending the cell-based smoothed finite element method into strongly coupled fluid-thermal-structure interaction. International Journal for Numerical Methods in Fluids, 2021, 93(4): 1269-1291.
[24] 
He T. Cell-based smoothed finite element method for simulating vortex-induced vibration of multiple bluff bodies. Journal of Fluids and Structures, 2020, 98: 103140.
[23] 
He T. An efficient selective cell-based smoothed finite element approach to fluid-structure interaction. Physics of Fluids, 2020, 32(6): 067102. (Editor's Pick)
[
22] He T. A truly mesh-distortion-enabled implementation of cell-based smoothed finite element method for incompressible fluid flows with fixed and moving boundaries. International Journal for Numerical Methods in Engineering, 2020, 121(14): 3227-3248.
[21] 
He T. A strongly-coupled cell-based smoothed finite element solver for unsteady viscoelastic fluid-structure interaction. Computers and Structures, 2020, 235: 106264.
[20] 
He T. A cell-based smoothed CBS finite element formulation for computing the Oldroyd-B fluid flow. Journal of Non-Newtonian Fluid Mechanics, 2019, 272: 104162.
[19] 
He T. The cell-based smoothed finite element method for viscoelastic fluid flows using fractional-step schemes. Computers and Structures, 2019, 222: 133-147.
[18] 
He T, Wang T*. A three-field smoothed formulation for partitioned fluid-structure interaction via nonlinear block-Gauss-Seidel procedure. Numerical Heat Transfer, Part B: Fundamentals, 2019, 75(3): 198-216. (accept as is)
[
17] He T. Insight into the cell-based smoothed finite element method for convection-dominated flows. Computers and Structures, 2019, 212: 215-224.
[16] 
He T*, Zhang H, Zhang K. A smoothed finite element approach for computational fluid dynamics: applications to incompressible flows and fluid-structure interaction. Computational Mechanics, 2018, 62(5): 1037-1057.
[15] 
He T. A three-field smoothed formulation for prediction of large-displacement fluid-structure interaction problems via the Explicit Relaxed Interface Coupling (ERIC) scheme. Communications in Computational Physics, 2018, 24(3): 742-763.
[14] 
He T*, Yang J, Baniotopoulos C. Improving the CBS-based partitioned semi-implicit coupling algorithm for fluid-structure interaction. International Journal for Numerical Methods in Fluids, 2018, 87(9): 463-486.
[13] 
He T. Towards straightforward use of cell-based smoothed finite element method in fluid-structure interaction. Ocean Engineering, 2018, 157: 350-363.
[12] 
He T*, Wang T, Zhang H. The use of artificial compressibility to improve partitioned semi-implicit FSI coupling within the classical Chorin-Témam projection framework. Computers and Fluids, 2018, 166: 64-77.
[11] 
He T*, Zhang K. An overview of the combined interface boundary condition method for fluid-structure interaction. Archives of Computational Methods in Engineering, 2017, 24(4): 891-934.
[10] 
He T, Zhang K, Wang T*. AC-CBS-based partitioned semi-implicit coupling algorithm for fluid-structure interaction using stabilized second-order pressure scheme. Communications in Computational Physics, 2017, 21(5): 1449-1474.
[09] Wang T, 
He T*, Li H. Effects of deformation of elastic constraints on free vibration characteristics of cantilever Bernoulli-Euler beams. Structural Engineering and Mechanics, 2016, 59(6): 1139-1153.
[08] 
He T. A CBS-based partitioned semi-implicit coupling scheme for fluid-structure interaction using MCIBC method. Computer Methods in Applied Mechanics and Engineering, 2016, 298: 252-278.
[07] 
He T*, Zhang K. Combined interface boundary condition method for fluid-structure interaction: Some improvements and extensions. Ocean Engineering, 2015, 109: 243-255.
[06] 
He T. Semi-implicit coupling of CS-FEM and FEM for the interaction between a geometrically nonlinear solid and an incompressible fluid. International Journal of Computational Methods, 2015, 12(5): 1550025.
[05] 
He T. On a partitioned strong coupling algorithm for modeling fluid-structure interaction. International Journal of Applied Mechanics, 2015, 7(2): 1550021. (Managing-Editor-Featured Paper)
[
04] He T. Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes. Wind and Structures, 2015, 20(3): 423-448.
[03] 
He T. A partitioned implicit coupling strategy for incompressible flow past an oscillating cylinder. International Journal of Computational Methods, 2015, 12(2): 1550012.
[02] 
He T, Zhou D*, Han Z, Tu J, Ma J. Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method. International Journal of Computational Fluid Dynamics, 2014, 28(6-10): 272-300.
[01] 
He T, Zhou D*, Bao Y. Combined interface boundary condition method for fluid-rigid body interaction. Computer Methods in Applied Mechanics and Engineering, 2012, 223-224: 81-102.

荣誉与奖励

第十三届全国流体力学学术会议流固耦合力学分会场邀请报告,2024
Editor’s Pick
Physics of Fluids2020
Managing-Editor-Featured Paper
International Journal of Applied Mechanics2015
英国伯明翰大学PGTA博士奖学金,2014
美国乔治华盛顿大学博士奖学金(University Fellowship),2014
博士研究生国家奖学金,2013
首届全国空间结构博士生学术论坛优秀论文奖,2012
赵朱木兰奖学金,2012
上海交通大学第四期博士生论坛优秀报告奖,2011
光华奖学金,2010

人才培养

指导研究生获得:高水平地方高校建设一流研究生教育项目、国家奖学金、上海市/校优秀毕业生、校优秀硕士学位论文、一等/二等学业奖学金、校优秀研究生等
指导本科生获得:国家级/上海市级大创项目、校优秀实习毕业生等

学术服务

欧盟杰出青年科学家起步基金项目(The ERC Starting Grant, 150万欧元)国际评审专家
智利国家科技发展基金(FONDECYT)国际评审专家
国家自然科学基金通讯评审专家
全国本科毕业论文(设计)抽检评审专家
受邀为以下SCI期刊审稿人:
[01] Journal of Fluid Mechanics
[02] Computer Methods in Applied Mechanics and Engineering
[03] International Journal for Numerical Methods in Engineering
[04] Computers and Structures
[05] International Journal for Numerical Methods in Fluids
[06] Journal of Non-Newtonian Fluid Mechanics
[07] Computers and Fluids
[08] Journal of Fluids and Structures
[09] International Journal of Heat and Fluid Flow
[10] Applied Mathematical Modelling
[11] Mathematics and Computers in Simulation
[12] Applied Mathematics and Computation
[13] Computers and Mathematics with Applications
[14] International Journal of Mechanical Sciences
[15] Acta Mechanica
[16] Journal of Engineering Mechanics
[17] Archive of Applied Mechanics
[18] Advances in Engineering Software
[19] International Communications in Heat and Mass Transfer
[20] Engineering with Computers
[21] Nonlinear Dynamics
[22] Engineering Computations
[23] Physics of Fluids
[24] Ocean Engineering
[25] Engineering Structures
[26] Computer Methods in Biomechanics and Biomedical Engineering
[27] Engineering Analysis with Boundary Elements
[28] Communications in Computational Physics
[29] Structural Engineering and Mechanics
[30] International Journal of Applied Mechanics
[31] Wind and Structures
[32] Earthquakes and Structures
[33] Chinese Journal of Aeronautics
[34] Scientia Iranica
[35] Computer Modeling in Engineering & Sciences
[36] Engineering Applications of Computational Fluid Mechanics
[37] Computers, Materials & Continua
[38] Ain Shams Engineering Journal
[39] Results in Engine
ering
受邀为以下国际会议审稿人: 
[01] Proceedings of the 7th International and 45th National Conference on Fluid Mechanics and Fluid Power (FMFP), IIT Bombay, India, 2018
[02] Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2016), Busan, Korea, 2016