何涛

发布单位:人员机构编辑:发布日期:2019/09/23浏览量:1018

基本信息

姓名:何涛
性别:

学位职称:博士,副研究员,硕士生导师

职务:

联系地址:上海市海思路
100号,上海师范大学
邮政编码:
201418

办公电话:021-57124068
电子信箱:
taohe@shnu.edu.cn


研究兴趣

流固耦合有限元方法计算流体动力学

教育背景

2014.07~2018.06 英国伯明翰大学 土木工程,哲学博士
2008.09~2013.12 上海交通大学结构工程,工学博士
2004.09~2006.12 华中科技大学结构工程,工学硕士
2000.09~2004.06 武汉科技大学土木工程,工学学士

工作经历

2016.09至今 上海师范大学建筑工程学院副研究员(破格晋升,2019.06获硕士生导师资格)
2017.08~2018.07 爱丁堡龙比亚大学工程与建筑环境学院访问学者
2014.12~2016.08 上海师范大学建筑工程学院讲师
2007.04~2008.06 中国地震局地震研究所助理工程师

科研项目

主持项目
[1]  上海市自然科学基金面上项目: 基于特征线分裂的流固耦合分区半隐式算法研究及应用(19ZR14372002019~2022
[2]  国家自然科学基金青年项目: 风敏感结构流固耦合计算新方法与风致振动机理研究(515083322016~2018
[3]  上海高校青年教师培养资助计划: 基于ALECBS有限元技术的流固耦合分区算法研究2016~2018

参与项目
[1]  上海师范大学创新团队项目:大跨度索结构关键共性技术研究2015~2017
[2]  国家自然科学基金面上项目3项

荣誉与奖励

[1]  Managing-Editor-Featured PaperInternational Journal of Applied Mechanics2015
[2]  英国伯明翰大学PGTA博士奖学金,2014
[3]  博士研究生国家奖学金,2013
[4]  首届全国空间结构博士生学术论坛优秀论文奖,2012
[5]  赵朱木兰奖学金,2012
[6]  上海交通大学第四期博士生论坛优秀报告奖,2011
[7]  光华奖学金,2010

教学工作

[1]  本科生课程:《工程数学》、《力学与生活》
[2]  外教课程:《Engineering Survey》
[3]  土木工程专业前沿技术讲座:《工程中的流固耦合作用——现象、原理与数值模拟》

代表性论文

[01]  He T. A cell-based smoothed CBS finite element formulation for computing the Oldroyd-B fluid flow. Journal of Non-Newtonian Fluid Mechanics 2019; 272:104162. (2019JCR IF=2.270)
[02]  He T. The cell-based smoothed finite element method for viscoelastic fluid flows using fractional-step schemes. Computers and Structures 2019; 222:133-147. (2019JCR IF=3.354)
[03]  He T, Wang T*. A three-field smoothed formulation for partitioned fluid–structure interaction vianonlinear block-Gauss–Seidel procedure. Numerical Heat Transfer, Part B: Fundamentals 2019; 75(3):198-216. (2019JCR IF=1.216)
[04]  He T. Insight into the cell-based smoothed finite element method for convection-dominated flows. Computers and Structures 2019; 212:215-224. (2019JCR IF=3.354)
[05]  He T*, Zhang HX, Zhang K. A smoothed finite element approach for computational fluid dynamics: applicationsto incompressible flows and fluid–structure interaction. Computational Mechanics 2018; 62(5):1037-1057. (2019JCR IF=3.159)
[06]  He T. A three-field smoothed formulation for prediction of large-displacement fluid–structure interactionproblems via the Explicit Relaxed Interface Coupling (ERIC) scheme. Communications in Computational Physics 2018; 24(3):742-763. (2019JCR IF=1.813)
[07]  He T*, Yang J, Baniotopoulos C. Improving the CBS-based partitioned semi-implicit coupling algorithmfor fluid–structure interaction. International Journal for Numerical Methods in Fluids 2018; 87(9):463-486. (2019JCR IF=1.631)
[08]  He T. Towards straightforward use of cell-based smoothed finite element method in fluid–structure interaction.Ocean Engineering 2018; 157:350-363. (2019JCR IF=2.730)
[09]  He T*, Wang T, Zhang HX. The use of artificial compressibility to improve partitioned semi-implicit FSIcoupling within the classical Chorin–Témam projection framework. Computers and Fluids 2018; 166:64-77. (2019JCR IF=2.223)
[10]  He T*, Zhang K. An overview of the combined interface boundary condition method for fluid–structure interaction. Archives of Computational Methods in Engineering 2017; 24(4):891-934. (2019JCR IF=7.242)
[11]  He T*, Zhang K, Wang T. AC-CBS-based partitioned semi-implicit coupling algorithm for fluid–structure interaction using stabilized second-order pressure scheme. Communications in Computational Physics 2017;21(5):1449-1474. (2019JCR IF=1.813)
[12]  Wang T, He T*, Li HJ. Effects of deformation of elastic constraints on free vibration characteristics of cantilever Bernoulli–Euler beams. Structural Engineering and Mechanics 2016; 59(6):1139-1153. (2019JCR IF=2.804)
[13]  He T. A CBS-based partitioned semi-implicit coupling scheme for fluid–structure interaction using MCIBCmethod. Computer Methods in Applied Mechanics and Engineering 2016; 298:252-278. (2019JCR IF=4.821)
[14]  He T*, Zhang K. Combined interface boundary condition method for fluid–structure interaction: Someimprovements and extensions. Ocean Engineering 2015; 109:243-255. (2019JCR IF=2.730)
[15]  He T. Semi-implicit coupling of CS-FEM and FEM for the interaction between a geometrically nonlinearsolid and an incompressible fluid. International Journal of Computational Methods 2015; 12(5):1550025. (2019JCR IF=1.221)
[16]  He T. On a partitioned strong coupling algorithm for modeling fluid–structure interaction. International Journal of Applied Mechanics 2015; 7(2):1550021. (2019JCR IF=1.939)
[17]  He T. Partitioned coupling strategies for fluid–structure interaction with large displacement: Explicit, implicitand semi-implicit schemes. Wind and Structures 2015; 20(3):423-448. (2019JCR IF=1.256)
[18]  He T. A partitioned implicit coupling strategy for incompressible flow past an oscillating cylinder. International Journal of Computational Methods 2015; 12(2):1550012. (2019JCR IF=1.221)
[19]  He T, Zhou D*, Han ZL, Tu JH, Ma J. Partitioned subiterative coupling schemes for aeroelasticity usingcombined interface boundary condition method. International Journal of Computational Fluid Dynamics 2014; 28(6-10):272-300. (2019JCR IF=1.384)
[20]  He T, Zhou D*, Bao Y. Combined interface boundary condition method for fluid–rigid body interaction. Computer Methods in Applied Mechanics and Engineering 2012; 223-224:81-102. (2019JCR IF=4.821)

学术服务

为以下SCI期刊审稿人:
Computer Methods in Applied Mechanics and Engineering, International Journal for Numerical Methods in Engineering, Computers and Fluids, International Journal for Numerical Methods in Fluids, Journal of Fluids and Structures, Ocean Engineering, International Journal of Heat and Fluid Flow, Applied Mathematics andComputation, International Journal of Mechanical Sciences, Engineering Computations, Engineering Analysiswith Boundary Elements, Communications in Computational Physics, Structural Engineering and Mechanics, Wind and Structures, International Journal of Applied Mechanics, Earthquakes and Structures, Chinese Journal of Aeronautics

为以下国际会议审稿人:
[1]  Proceedings of the 7th International and 45th National Conference on Fluid Mechanics and Fluid Power(FMFP), IIT Bombay, India, 2018
[2]  Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering(OMAE 2016), Busan, Korea, 2016